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problemsolvers

A False Start 
Students with a typical background in 
counting might rush to the incorrect 
solution of 5P5 = 5! = 5 • 4 • 3 • 2 • 1 = 120 
distinct permutations. At this point, stu-
dents should be prompted to think about 
why this answer is not correct. Once 
they realize that horses can finish in a 
tie, they are ready to work on a solution. 
In the classroom, one way to approach 
this difficult counting problem is to make 
it a simpler problem by reducing the 
number of horses in the race. Seeing how 
students approach the problem for 2 and 
3 horses might suggest strategies for the 
cases of 4 or 5 horses. We assume that 
this discussion has already taken place, 
as we look at the 5-horse problem. 

Back to the Starting Gate
Starting fresh, let’s think about some 
simple examples of ties. One possibility 
is a five-way dead heat. A five-way tie 
can occur in only one way. Of course, 
there are other ways to tie, and at this 
point the problem begins to invite real 
mathematical creativity, the kind of cre-
ativity that we hope your students will 
allow us to showcase in future columns.

A SAMPLING OF STUDENT 
SOLUTIONS
Solution 1
The first solution comes from a pair of 
second-year algebra students, Michal 
and Aleck. They drew a set of diagrams 
for a variety of cases and then applied 
counting principles to add the various 
cases. After checking their work several 

times, they arrived at a total number of 
541 finishes for a 5-horse race. Figure 1 
shows an excerpt of their work. 

Michal and Aleck were so captivated 
by this problem that they were willing 
to spend hours of persistent work draw-
ing the diagrams, analyzing the patterns, 
and extrapolating from these patterns 
to arrive at a number for each set of 
cases. They arrived at a correct solution 
without creating a recurrence relation 
or relying on formulas. Had the problem 
been posed for a 6-horse race, however, 
it seems likely that they would have 
found the problem intractable.

Solution 2
One of the department editors also chose 
to draw diagrams for each case but, rather 
than count each case, applied combina-
tions and permutations to arrive at a final 
answer. In this analysis, the problem is 
broken into cases according to which 
kinds of ties can happen (see fig. 2). 

Case 1, shown in column 1, corre-
sponds to the situation in which each of 
the 5 horses crosses individually. 

Case 2 corresponds to the situation in 
which all 5 horses cross the finish line 
simultaneously. There is only one way 
this can happen. 

Case 3 considers the possibility of 4 
horses finishing simultaneously and 1 
horse finishing singly. Any one of the 5 
horses might be the singleton, and this 
horse might finish behind the others or, 
as Secretariat did, ahead of the pack by 
thirty-one lengths. We may thus con-
clude that case 3 includes 10 finishes. 
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This month marks the inception of a 
new Mathematics Teacher depart-
ment on problem solving modeled on 

a similar department in our sister journal 
Teaching Children Mathematics. Problem 
Solvers will appear in the August and April 
issues of MT and will present interesting 
problems to share with students. Submit 
your students’ work, and creative solutions 
will be published in the journal or posted on 
the MT website. To initiate the department, 
its editors have presented a problem and 
their own students’ solutions this month, 
together with a prompt for readers to try 
with their students. Solutions must reach 
the department editors by December 1, 
2011, to be considered for publication.

THE 5-HORSE RACE
The Problem
In a 5-horse race, how many different finishing orders are there? 
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Cases 4(a) and 4(b) consider 3 horses 
finishing simultaneously. In case 4(a), 
the remaining horses finish singly. 
These three sets of horses may then 
be permuted, so (5C3)(3P3) = 60 unique 
finishes. In case 4(b), the remaining 2 
horses also tie (in either first or second 
place). Computing 5C3 = 10 gives the 
number of ways of selecting 3 horses 
in a tie. If the other 2 horses also tie, 
we may simply multiply by 2 to obtain 
another 20 possibilities. 

Case 5(a) can be solved in a manner 
similar to that for case 4(a). First, we 
select the 3 horses that finish singly. The 
remaining 2 horses tie in first, second, 
third, or fourth place. Thus, (5C2)(4P4) = 
240 unique finishes.

Case 5(b) seems to present the real 
challenge and deserves special consider-
ation. In case 5(b), there are two sets of 
two-way ties. We cannot simply select 2 
horses out of 5, then select 2 horses from 
the 3 that remain, and then multiply by 
3P3 to take into account the singleton. 
Doing so results in an overcount. An 
alternative is to list all combinations of 
2 horses with one singleton, eliminate 
the degenerate cases, and then multiply 
the unique sets of pairs of two-way ties 
by 3P3. The result yields 90 unique fin-
ishes and is summarized in figure 3. To 
account for the degenerate possibilities, 
we now give each horse a letter designa-
tion from F to J and eliminate the degen-
erate cases by striking them through. We 
then sum the solutions for all cases (see 
fig. 4).

Solution 3
A similar approach, developed by the 
second department editor, is shown 
in figure 5. Each possible outcome of 
the race is described by a configuration 
of squares. In each configuration, the 

Fig. 1  Excerpts of the work done by two second-year algebra students seem to indicate that 

using this method with 6 horses would have created a prohibitive amount of work.

Fig. 2  Each X represents a horse. As each case is considered, the distinguishability of these horses is taken into account.
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horizontal axis represents time, and 
the vertical stacks represent ties. (This 
approach reverses the conventions used 
in the second solution, in which the 
vertical axis is time.) The different con-
figurations have been sorted into color-
coded categories. Each configuration 
has a caption that describes the number 
of distinct ways that horse names can 

Fig. 3   each set that is not eliminated is multiplied by 3P3 = 6 to give a total of 90 fi nishes. 

Fig. 4  all possible unique fi nishes are 

enumerated.
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Number of 
Unique Finishes

Case 1 120

Case 2 1

Case 3 10

Case 4(a) 60

Case 4(b) 20

Case 5(a) 240

Case 5(b) 90

Total   541

MATHEMATICS 
IS ALL AROUND US.

I ♥ Fibonacci numbers. 
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be assigned to that configuration. This 
number is found by first considering all 
possible 5! permutations of the 5 horse 
names and then converting each stack 
of ordered names that occur in a tie into 
an unordered list by dividing by the 
appropriate factorial. (These quotients 
of factorials appearing in the captions 
are often called generalized binomial coef-
ficients or multinomial coefficients.) 

Solution 4
The fourth solution depends on a recur-
rence relation between the solution to 
the 5-horse problem and solutions to 
versions of the problem that involve 
fewer horses. Letting Hn represent the 
number of ways in which horses can 
finish in an n-horse race and C(n, k) rep-
resent the binomial coefficients, we have 

the following: 

H5 = C(5, 5) + C(5, 4) • H1 + C(5, 3) •  
H2 + C(5, 2) • H3 + C(5, 1) • H4

H4 = C(4, 4) + C(4, 3) • H1 + C(4, 2) •  
H2 + C(4, 1) • H3

H3 = C(3, 3) + C(3, 2) • H1 + C(3, 1) • H2

H2 = C(2, 2) + C(2, 1) • H1

Checking that H1 = 1 is easy, so we can 
unravel this chain of equations to solve 
for all the values up through H5 = 541. 
This process can be repeated to deter-
mine higher values of Hn as well.

Here is an explanation of the first 
recurrence equation, focusing particu-
larly on the term C(5, 3) • H2. Split the 
outcome of a race of 5 horses into two 
parts: (i) the list of all winners that tie 
for first place followed by (ii) the list of 

also-rans who are farther back in the 
pack. The number of ties in list (i) can 
be k = 1, 2, 3, 4, or 5. In the case of a 
three-way tie for first place, there are 
C(5, 3) ways to choose the names of the 
horses listed in (i). After these names 
have been chosen, the remaining list (ii) 
of also-rans can be any list of 2 horses, 
with ties allowed. The number of such 
lists is H2. Thus, by the fundamental 
principle of counting, there are C(5, 3) • 
H2 ways to create a list that starts with a 
three-way tie for first place. Similar 
explanations can be given for all the 
other terms on the right side of the first 
recurrence equation.

We encourage readers to come up 
with a solution to the general recur-
sion that could be used for an n-horse 
race and that might be easily grasped 
by high school students. A summary of 
the recurrence relationship giving the 
number of possible finishes for up to a 
10-horse race is given in figure 6. Read-
ers who want to pursue more properties 
of these numbers will want to know 
that they describe the number of ordered 
partitions of a set of N elements and 
that these numbers are sometimes called 
ordered Bell numbers.

Do you have your own approach 
to this problem? We would love to see 
it. Now that we have begun the school 
year, we also invite you to work on and 
share with your students the next prob-
lem for this department.  

Fig. 5  The diagram to accompany the third solution of the horse race problem puts time on the 

horizontal axis.

Fig. 6  The Bell numbers listed here produce the 

number of finishes for an n-horse race for n ≤ 10. 

Number 
of Horses

Number of Possible 
Finishes (including ties)

0 1

1 1

2 3
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4 75

5 541

6 4,683

7 47,293

8 545,835

9 7,087,261

10 102,247,563

   
       
             
                     
5! 5! 5! 5! 5!
5! 1! 4! 2! 3! 1! 1! 3! 1! 2! 2!

 
     
           
                   
5! 5! 5! 5!
4! 1! 3! 2! 1! 3! 1! 2! 1! 2!

 
     
           

5! 5!
3! 1! ! 2! 2! 1!

       
                               
5! 5! 5! 5!
1! 1! 1! 2! 1! 1! 2! 1! 1! 2! 1! 1! 2! 1! 1! 1!

         
5!

1! 1! 1! 1! 1!



66  MatheMatics teacher | Vol. 105, No. 1 • august 2011

Solve This Problem!
Work on the following problem with your students. Reminder: For your 
students’ work to be considered for publication in MT April 2012, please submit 
all such work to the department editors by December 1, 2011.

Problem: Tipping Points
What’s the fastest strategy for spooning out the last melted part of an ice-cream 
sundae from the bottom of the bowl? Once the liquid level is less than the depth of 
the spoon, the law of diminishing returns becomes noticeable: As the liquid level 
drops, the quantity of fluid that the spoon can capture also drops. To offset this 
frustrating effect, we often resort to the trick of tilting the bowl to pool the fluid 
into a small deep pocket that fills more of the spoon. It is natural to ask, What is 
the tilt angle that will maximize the depth of the pool? The relationship between the 
depth of the pool and the tilt angle can be found using geometry and trigonometry.

Assumptions
For simplicity, let’s analyze only a two-dimensional version of the problem—we 
will treat the container as a plane rectangle. Suppose that a quantity of fluid 
occupies a region of known area A, inside a deep rectangular container of 
known width W, which is tilted at a small angle T. 

 
Investigation 1
• What is the fluid depth D, measured from the top of the fluid surface to the 

deepest point that lies directly below the surface? (This deepest point is the 
lower-left corner in the diagrams below.)

• Express the depth D in terms of the tilt angle, the width W of the container, 
and the area A occupied by water. 

• Note that there are two cases to consider: 
 Case 1: The angle is so shallow that the fluid is a trapezoid, as in the left diagram.
 Case 2: The angle is so steep that the fluid is a triangle, as in the right diagram.

Investigation 2
• What is the greatest possible value of D expressed in terms of the width W 

and area A?
• Does the greatest possible value of D happen in case 1 or case 2? This ques-

tion can be explored by graphing D as a function of T using the two formulas 
obtained for D from the results of investigation 1. 

 
 

    

T = Smaller tilt 

D = Fluid depth D = Fluid depth

Case 2: Larger tilt angleCase 1: Smaller tilt angle

T = Larger tilt 

Fig. 1  in both cases, the base of the tilted container is W, and the area of the shaded region is A.
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